En este portal utilizamos datos de navegación / cookies propias y de terceros para gestionar el portal, elaborar información estadística, optimizar la funcionalidad del sitio y mostrar publicidad relacionada con sus preferencias a través del análisis de la navegación. Si continúa navegando, usted estará aceptando esta utilización. Puede conocer cómo deshabilitarlas u obtener más información
aquí
Ya tienes una cuenta vinculada a EL TIEMPO, por favor inicia sesión con ella y no te pierdas de todos los beneficios que tenemos para tí. Iniciar sesión
¡Hola! Parece que has alcanzado tu límite diario de 3 búsquedas en nuestro chat bot como registrado.
¿Quieres seguir disfrutando de este y otros beneficios exclusivos?
Adquiere el plan de suscripción que se adapte a tus preferencias y accede a ¡contenido ilimitado! No te
pierdas la oportunidad de disfrutar todas las funcionalidades que ofrecemos. 🌟
¡Hola! Haz excedido el máximo de peticiones mensuales.
Para más información continua navegando en eltiempo.com
Error 505
Estamos resolviendo el problema, inténtalo nuevamente más tarde.
Procesando tu pregunta... ¡Un momento, por favor!
¿Sabías que registrándote en nuestro portal podrás acceder al chatbot de El Tiempo y obtener información
precisa en tus búsquedas?
Con el envío de tus consultas, aceptas los Términos y Condiciones del Chat disponibles en la parte superior. Recuerda que las respuestas generadas pueden presentar inexactitudes o bloqueos, de acuerdo con las políticas de filtros de contenido o el estado del modelo. Este Chat tiene finalidades únicamente informativas.
De acuerdo con las políticas de la IA que usa EL TIEMPO, no es posible responder a las preguntas relacionadas con los siguientes temas: odio, sexual, violencia y autolesiones
Noticia
Video: así es que los agujeros negros se ‘devoran’ las estrellas que caen en ellos
El estudio proporciona nuevos conocimientos sobre las misteriosas emisiones ópticas y ultravioleta observadas durante estos eventos catastróficos.
Simulaciones innovadoras han contribuido a un gran avance en la comprensión del dramático destino de las estrellas que se acercan demasiado a los agujeros negros en los centros de las galaxias.
Un equipo internacional de astrofísicos ha capturado el complejo proceso de cómo estas estrellas son destrozadas y consumidas por los agujeros negros, proporcionando nuevos conocimientos sobre las misteriosas emisiones ópticas y ultravioleta observadas durante estos eventos catastróficos.
"Esta es la primera simulación autoconsistente de una estrella que es desgarrada por mareas por un agujero negro supermasivo, seguida de la evolución de los escombros resultantes en el transcurso de un año", explica Daniel Price, profesor de la Escuela de Física y Astronomía en la Universidad de Monash, que dirigió el estudio.
"Nuestras simulaciones proporcionan una nueva perspectiva sobre los momentos finales de las estrellas en las proximidades de los agujeros negros supermasivos", dijo.
"Al capturar la evolución completa de los escombros, podemos intentar conectar las simulaciones con el creciente número de eventos de destrucción de estrellas observados mediante sondeos con telescopios"
El estudio, publicado en The Astrophysical Journal Letters, abre nuevas vías para la investigación del comportamiento de la materia en campos gravitacionales extremos y los ciclos de vida de las estrellas y los agujeros negros.
Cuando una estrella pasa demasiado cerca de un agujero negro supermasivo, las intensas fuerzas gravitacionales lo desmembran en un proceso conocido como evento de disrupción de marea (TDE). Los escombros de la estrella forman una corriente que finalmente alimenta al agujero negro. Los escombros de la estrella forman un disco giratorio alrededor del agujero negro, que emite una radiación intensa a través del espectro electromagnético. Sin embargo, muchos aspectos de los TDE siguen siendo poco conocidos.
Las nuevas simulaciones muestran que estos desechos forman una burbuja asimétrica alrededor del agujero negro, reprocesando la energía y produciendo las curvas de luz observadas con temperaturas más bajas, luminosidades más débiles y velocidades de gas de 10.000 a 20.000 km/s.
"El estudio ayuda a explicar varias propiedades desconcertantes de los TDE observados", dijo el profesor Price. "Una buena analogía es el cuerpo humano: cuando comemos el almuerzo, nuestra temperatura corporal no cambia mucho. Esto se debe a que reprocesamos la energía del almuerzo en longitudes de onda infrarrojas.
"Un TDE es similar, en la mayoría de los casos no vemos el estómago del agujero negro comiendo gas, porque está sofocado por material que reemite en longitudes de onda ópticas. Nuestras simulaciones muestran cómo se produce esta asfixia".